Neurogenetic Algorithm for Solving Combinatorial Engineering Problems
نویسندگان
چکیده
Diversity of the population in a genetic algorithm plays an important role in impeding premature convergence. This paper proposes an adaptive neurofuzzy inference system genetic algorithm based on sexual selection. In this technique, for choosing the female chromosome during sexual selection, a bilinear allocation lifetime approach is used to label the chromosomes based on their fitness value which will then be used to characterize the diversity of the population. The motivation of this algorithm is to maintain the population diversity throughout the search procedure. To promote diversity, the proposed algorithm combines the concept of gender and age of individuals and the fuzzy logic during the selection of parents. In order to appraise the performance of the techniques used in this study, one of the chemistry problems and some nonlinear functions available in literature is used.
منابع مشابه
Selecting Efficient Service-providers in Electric Power Distribution Industry Using Combinatorial Reverse Auction
In this paper, a combinatorial reverse auction mechanism is proposed for selecting the most efficient service-providers for resolving sustained power interruptions in multiple regions of an electric power distribution company’s responsibility area. Through this mechanism, supplying the required service in each region is assigned to only one potential service-provider considering two criteria in...
متن کاملOptimization of profit and customer satisfaction in combinatorial production and purchase model by genetic algorithm
Optimization of inventory costs is the most important goal in industries. But in many models, the constraints are considered simple and relaxed. Some actual constraints are to consider the combinatorial production and purchase models in multi-products environment. The purpose of this article is to improve the efficiency of inventory management and find the economic order quantity and economic p...
متن کاملParallelizing Assignment Problem with DNA Strands
Background:Many problems of combinatorial optimization, which are solvable only in exponential time, are known to be Non-Deterministic Polynomial hard (NP-hard). With the advent of parallel machines, new opportunities have been emerged to develop the effective solutions for NP-hard problems. However, solving these problems in polynomial time needs massive parallel machines and ...
متن کاملAn Effective Genetic Algorithm for Solving the Multiple Traveling Salesman Problem
The multiple traveling salesman problem (MTSP) involves scheduling m > 1 salesmen to visit a set of n > m nodes so that each node is visited exactly once. The objective is to minimize the total distance traveled by all the salesmen. The MTSP is an example of combinatorial optimization problems, and has a multiplicity of applications, mostly in the areas of routing and scheduling. In this paper,...
متن کاملSolving the Multiple Traveling Salesman Problem by a Novel Meta-heuristic Algorithm
The multiple traveling salesman problem (MTSP) is a generalization of the famous traveling salesman problem (TSP), where more than one salesman is used in the solution. Although the MTSP is a typical kind of computationally complex combinatorial optimization problem, it can be extended to a wide variety of routing problems. This paper presents an efficient and evolutionary optimization algorith...
متن کاملHybrid Meta-heuristic Algorithm for Task Assignment Problem
Task assignment problem (TAP) involves assigning a number of tasks to a number of processors in distributed computing systems and its objective is to minimize the sum of the total execution and communication costs, subject to all of the resource constraints. TAP is a combinatorial optimization problem and NP-complete. This paper proposes a hybrid meta-heuristic algorithm for solving TAP in a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Mathematics
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012